
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Extrastriate Visual Areas Integrate Form Features over Space and Time to Construct Representations of Stationary and Rigidly Rotating Objects

Extrastriate Visual Areas Integrate Form Features over Space and Time to Construct Representations of Stationary and Rigidly Rotating Objects
AbstractWhen an object moves behind a bush, for example, its visible fragments are revealed at different times and locations across the visual field. Nonetheless, a whole moving object is perceived. Unlike traditional modal and amodal completion mechanisms known to support spatial form integration when all parts of a stimulus are simultaneously visible, relatively little is known about the neural substrates of the spatiotemporal form integration (STFI) processes involved in generating coherent object representations from a succession visible fragments. We used fMRI to identify brain regions involved in two mechanisms supporting the representation of stationary and rigidly rotating objects whose form features are shown in succession: STFI and position updating. STFI allows past and present form cues to be integrated over space and time into a coherent object even when the object is not visible in any given frame. STFI can occur whether or not the object is moving. Position updating allows us to perceive a moving object, whether rigidly rotating or translating, even when its form features are revealed at different times and locations in space. Our results suggest that STFI is mediated by visual regions beyond V1 and V2. Moreover, although widespread cortical activation has been observed for other motion percepts derived solely from form-based analyses [Tse, P. U. Neural correlates of transformational apparent motion. Neuroimage, 31, 766–773, 2006; Krekelberg, B., Vatakis, A., & Kourtzi, Z. Implied motion from form in the human visual cortex. Journal of Neurophysiology, 94, 4373–4386, 2005], increased responses for the position updating that lead to rigidly rotating object representations were only observed in visual areas KO and possibly hMT+, indicating that this is a distinct and highly specialized type of processing.
- Brown University United States
- University of Nevada Reno United States
- Dartmouth College United States
- Stanford University United States
- Dartmouth College United States
Male, Analysis of Variance, Brain Mapping, Magnetic Resonance Imaging, 629, Space Perception, Time Perception, Image Processing, Computer-Assisted, Linear Models, Humans, Female, Visual Fields, Photic Stimulation, Visual Cortex
Male, Analysis of Variance, Brain Mapping, Magnetic Resonance Imaging, 629, Space Perception, Time Perception, Image Processing, Computer-Assisted, Linear Models, Humans, Female, Visual Fields, Photic Stimulation, Visual Cortex
8 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
