Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Potential of Azo Dye Degrading Enzymes for Bioremediation in the Textile Industry: A Comparative Genomic Analysis for Safe Environment

Authors: Ghalia S. H. Alnusairi; Ameena A. AL-Surhanee; Suliman M. S. Alghanem; Ibtisam Mohammed Alsudays; Talaat H. Habeeb; Faisal Al-Sarraj; Majid Al-Zahrani; +3 Authors

Potential of Azo Dye Degrading Enzymes for Bioremediation in the Textile Industry: A Comparative Genomic Analysis for Safe Environment

Abstract

The textile industry plays a major part in the economy of the Kingdom of Saudi Arabia (KSA). However, the environmental impact of textile dyeing and wastewater discharge has become a growing concern in the region. This study addressed this issue by identifying and characterizing azo dye degrading enzymes that can be used in bioremediation strategies. Six enzymes, namely Thiol reductase, Thiol peroxidase, Alkene reductase, NADH-oxidoreductase, Oxidoreductase, and Sulfite reductase, were identified through a literature review and used as queries in BLASTp to search for homologous enzymes from Bacillus cereus, Brevibacillus brevis, Bacillus acidicola, and Paenibacillus alvei. The physicochemical characteristics and subcellular distribution of these enzymes were determined using online tools. Phylogenetic analysis was performed to investigate the evolutionary connection of these enzymes across different bacterial species. Additionally, gene structure and motif analysis were conducted to gain insights into functional motifs and gene organization of these enzymes. Domain prediction and protein–protein interaction analysis were carried out to identify conserved domains and potential protein interactions. The outcomes of this study offer valuable understandings on prospect of azo dye degrading enzymes for bioremediation strategies in the KSA textile industry, which is in agreement with the future Vision 2030 strategy. The identified enzymes and their homologs from other microbial genomes represent promising candidates for further experimental validation and utilization in bioremediation processes. Moreover, they contribute to the development of effective bioremediation strategies for the textile industry in the KSA region. Overall, this study enhances our understanding on azo dye degrading enzymes and their potential uses in the textile industry, particularly in the context of KSA.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average