
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thin Film Nano Solar Cells—From Device Optimization to Upscaling

pmid: 20352759
Stainless steel based dye solar cells have been upscaled from small, laboratory size test cells of 0.32 cm2 active area to 6 cm x 6 cm "mini-modules" with active areas ca. 15 cm2. Stainless steel works as the photoelectrode substrate whilst the counter electrode is prepared on indium-doped tin oxide coated polyethyleneterephtalate or polyethylenenaphtalate plastic foil (fluorine-doped tin oxide coated glass as a reference). Additional current collector structures were deposited on the counter electrode substrate with inkjet-printing of silver nanoparticle ink in order to reduce the lateral resistance of the plastic foil. Flexible substrates enable roll-to-roll type industrial manufacturing of the cells and the steel's superior conductivity compared to the typical substrate materials such as glass and plastic makes it possible to prepare even substantially larger modules. The best efficiencies obtained this far with the "mini-module" using a stainless steel photoelectrode are 2.5% with a platinum-sputtered indium-doped tin oxide coated polyethyleneterephtalate counter electrode and 3.4% with a thermally platinized fluorine-doped tin oxide coated glass counter electrode. These efficiencies are on the same level than those measured with small cells prepared with similar methods and materials (3.4%-4.7%, depending on configuration, which are amongst the highest reported for this kind of a dye solar cell). Replacing expensive conducting glass with steel and plastic foils as the substrate materials leads also to economical savings in the cell production.
- Helsinki University of Technology Finland
- University of Technology Russian Federation
- Helsinki University of Technology Finland
ta214, Dye Solar Cell, ta114, ta221, Metal Substrate, Plastic Substrate, Upscaling, ta218, Flexible
ta214, Dye Solar Cell, ta114, ta221, Metal Substrate, Plastic Substrate, Upscaling, ta218, Flexible
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
