Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bern Open Repository...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate Change Contributions to Increasing Compound Flooding Risk in New York City

Authors: Sarhadi, Ali; Rousseau-Rizzi, Raphael; Mandli, Kyle; Neal, Jeffrey; Wiper, Michael P.; Feldmann, Monika; Emanuel, Kerry;

Climate Change Contributions to Increasing Compound Flooding Risk in New York City

Abstract

Abstract Efforts to meaningfully quantify the changes in coastal compound surge- and rainfall-driven flooding hazard associated with tropical cyclones (TCs) and extratropical cyclones (ETCs) in a warming climate have increased in recent years. Despite substantial progress, however, obtaining actionable details such as the spatially and temporally varying distribution and proximal causes of changing flooding hazard in cities remains a persistent challenge. Here, for the first time, physics-based hydrodynamic flood models driven by rainfall and storm surge simultaneously are used to estimate the magnitude and frequency of compound flooding events. We apply this to the particular case of New York City. We find that sea level rise (SLR) alone will increase the TC and ETC compound flooding hazard more significantly than changes in storm climatology as the climate warms. We also project that the probability of destructive Sandy-like compound flooding will increase by up to 5 times by the end of the century. Our results have strong implications for climate change adaptation in coastal communities.

Country
Switzerland
Keywords

Extratropical Cyclones, Climate Change, 000 Computer science, knowledge & systems, Tropical Cyclones, 910 Geography & travel, 900 History

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green