
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Livestock solutions to regenerate soils and landscapes for sustainable agri-food systems transformation in Africa

handle: 10568/131561
Agri-food systems approaches have gained international recognition over the last years. The role of livestock—both in mixed crop-livestock and pastoral systems—in sustainable agri-food systems transformation remains contested. In this review paper we present new analyses of original data from an international livestock expert survey, a quantitative search in Web of Science, and a literature review to unravel the potential for livestock systems to sustainably transform agri-food systems through regenerating soils and restoring degraded landscapes. We (i) illustrate how livestock is important for people and planet alike; (ii) review how to harness livestock's potential for rehabilitation of soils and landscapes; (iii) demonstrate successful case studies of livestock solutions such as improved forages for cut-and-carry systems and grazing management; and (iv) identify four critical steps required for lasting change at continental scale. We conclude that livestock solutions can be key catalysts for sustainable agri-food systems transformation that merit accelerated public and private investments. More research is needed to develop concrete, operational and practical livestock solutions, and measure, monitor and report their contributions and progress toward the 2030 Agenda for Sustainable Development.
- CGIAR France
- Polytechnic University Japan
- Murdoch University Australia
- International Center for Tropical Agriculture Kenya
- CGIAR Consortium France
forage, soil, livestock, climate change, tropical zones, environment
forage, soil, livestock, climate change, tropical zones, environment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
