
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of the influence of high-power charging cycles on the capacity degradation of lithium-ion batteries under various temperatures

High-power-charging (HPC) behavior and extreme ambient temperature not only pose security risks on the operation of lithium-ion batteries but also lead to capacity degradation. Exploring the degradation mechanism under these two conditions is very important for safe and rational use of lithium-ion batteries. To investigate the influence of various charging-current rates on the battery-capacity degradation in a wide temperature range, a cycle-aging test is carried out. Then, the effects of HPC on the capacity degradation at various temperatures are analyzed and discussed using incremental capacity analysis and electrochemical impedance spectroscopy. The analysis results show that a large number of lithium ions accelerate the deintercalation when the HPC cycle rate exceeds 3 C, making the solid electrolyte interphase at the negative surface unstable and vulnerable to destruction, which results in irreversible consumption of active lithium. In addition, the decomposition of electrolyte is significantly promoted when the HPC temperature is more than 30°C, resulting in accelerated consumption of electrode materials and active lithium, which are the main reasons for the capacity degradation of lithium-ion batteries during HPC under various temperatures.
- Tsinghua University China (People's Republic of)
- Nanjing University of Science and Technology China (People's Republic of)
- Harbin University of Science and Technology China (People's Republic of)
- Harbin University of Science and Technology China (People's Republic of)
- Nanjing University of Science and Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
