
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A novel disturbance observer–based integral sliding mode control method for frequency regulation in power systems

This paper introduces a novel sliding mode controller to regulate frequency within a decentralized control framework. The decentralized frequency regulation model is a continuous-time linear system with mismatch disturbance that cannot be effectively removed. The proposed method combines the sliding mode and active disturbance rejection theories to reject the effects of mismatched disturbances with the aid of a disturbance observer to achieve a fully decentralized frequency regulation control. Furthermore, the sliding variables can be directly computed using the proposed steady-state method. In addition, by incorporating a constant delay into the input of the sliding mode controller, the transient performance is improved, resulting in a smaller overshoot and a shorter response time. Specifically, the proposed method demonstrated enhancements over the liner active disturbance rejection algorithm (5.04% and 54.4%, respectively), conventional proportional integral derivative method (5.09% and 68.03%, respectively), disturbance observer–based integral sliding mode control method (6.59% and 84.34%, respectively), and disturbance observer–based adaptive integral sliding mode control method (5.93% and 82.47%) in terms of both overshoot and response time.
- University of Western Australia Australia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
