
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hydrothermal liquefaction of microalgae after different pre-treatments

Hydrothermal liquefaction of different microalgae samples ( Arthrospira platensis cultivated by our research group) – fresh (directly after harvesting), dried and frozen – have been performed. In hydrothermal liquefaction process, the samples were heated up to 300°C for 30 min and kept at a constant temperature for 60 min. Then dichloromethane was added to the samples to extract the oil fraction. The products obtained after aqueous and dichloromethane solutions evaporation are referred to as water soluble organics and bio-oil correspondingly. The experiments on hydrothermal liquefaction of microalgae pre-treated in different ways were conducted for three independent harvest samples. The average values of bio-oil yield in the experiments with fresh, dried and frozen microalgae were equal to 44.07%, 39.97% and 39.65%, respectively. The average yields of water soluble organics were equal to 19.34%, 29.00% and 21.43% respectively. In all the experiments, the highest yield of bio-oil was reached for fresh microalgae. From this point of view, direct hydrothermal liquefaction processing of fresh microalgae seems to be more preferable that further enhances the advantage of hydrothermal liquefaction in comparison with other biomass-to-biofuel conversion methods.
- Lomonosov Moscow State University Russian Federation
- Joint Institute for High Temperatures Russian Federation
- Russian Academy of Sciences Russian Federation
TK1001-1841, Production of electric energy or power. Powerplants. Central stations, TJ807-830, Renewable energy sources
TK1001-1841, Production of electric energy or power. Powerplants. Central stations, TJ807-830, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
