
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
CBM exploration: Permeability of coal owing to cleat and connected fracture

Coalbed methane (CBM) resources cannot be efficiently explored and exploited without a robust understanding of the permeability of fracture-size heterogeneities in coal. In this study, two sister coal samples were imparted with pre-developed cleat and connected fractures, and the permeability of the coal samples was measured under different conditions of controlled confining and gas pressures. Furthermore, the implications of the results for CBM exploration and exploitation were discussed. The permeability of coal with cleat development ranged from 0.001–0.01 mD, indicating ultra-low permeability coal. The gas migration in this coal changed from a linear flow to a non-linear flow, with the increase in gas pressure (>1 MPa). Thus, the permeability of the coal initially increased and then decreased. However, the Klinkenberg effect does not exist in this ultralow-permeability coal. For the coal sample with connected fracture, permeability ranged from 0.1–10 mD, which is larger by hundred orders of magnitude than that of the sample with cleat. For this coal, with a decrease in gas pressure (<1 MPa), the Klinkenberg effect significantly increased the permeability of the coal. With an increase in the applied confining pressure, both the Klinkenberg coefficient and permeability of the coal presented a decreasing trend. It is suggested that field fracture investigation is a prerequisite and indispensable step for successful CBM production. The coal beds that cleat network is well conductive to the connected fracture can be an improved target area for CBM production. During CBM production, a variety of flow regimes are available owing to the decrease in CBM reservoir pressure. In particular, under the low CBM reservoir pressure and low in situ geo-stress conditions, the gas migration in the CBM reservoir with connected facture development exhibits remarkable free-molecular flow. Thus, the reservoir permeability and predicted CBM production will be enhanced.
- Henan Polytechnic University China (People's Republic of)
- Henan Polytechnic University China (People's Republic of)
- Henan University of Technology China (People's Republic of)
- Luoyang Institute of Science and Technology China (People's Republic of)
- Luoyang Institute of Science and Technology China (People's Republic of)
TK1001-1841, Production of electric energy or power. Powerplants. Central stations, TJ807-830, Renewable energy sources
TK1001-1841, Production of electric energy or power. Powerplants. Central stations, TJ807-830, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
