Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Exploration &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Modified Gorilla Troops Optimizer Algorithm for Interline Power Flow Controller-Based Damping Controller Design

Authors: Rajendra Kumar Khadanga; Deepa Das; Sidhartha Panda; Soumya Ranjan Mahapatro; Manoj Kumar Kar; Ahmed Al Mansur; Taha Selim Ustun; +1 Authors

A Novel Modified Gorilla Troops Optimizer Algorithm for Interline Power Flow Controller-Based Damping Controller Design

Abstract

To stabilize frequency in a power system, this research study suggests a novel modified Gorilla Troops Optimizer (mGTO) technique, which builds on the original technique, and offers notable gains in effectiveness and efficiency when solving real-world optimization problems. A thorough comparative analysis reveals that the mGTO algorithm is the best option, outperforming its counterparts in terms of stability and overall performance. Interestingly, mGTO performs better than any of its competitors in terms of stability, making it the best option. The mGTO algorithm significantly reduces implementation time and enhances solution quality compared to the conventional GTO algorithm. A new linearized Phillips–Heffron model with an IPFC was developed to investigate power systems’ stability. To effectively dampen low-frequency oscillations, an auxiliary controller for modeling the IPFC is proposed. It provides four options for damping controllers, and the recommended mGTO algorithm is used to adjust the controller parameters. This method is superior to traditional controllers in stability control and has undergone extensive validation. It is a crucial instrument for controlling the frequency of an SMIB power system based on IPFC. Based on the simulation results, the updated strategy that has been suggested is the most effective way to define the mentioned damping controller by considering the percentage improvement in the goal function value.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold