Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling the External Effects of Air Taxis in Reducing the Energy Consumption of Road Traffic

Authors: Shiqi Ou; Fei Xie; Zhenhong Lin;

Modeling the External Effects of Air Taxis in Reducing the Energy Consumption of Road Traffic

Abstract

Air taxis are currently being demonstrated. Few studies have quantified their external effects in reducing on-road vehicle fuel consumption. The hypothesis of this paper is that air taxis may divert some drivers away from congested traffic corridors, improve traffic speed and fuel economy, and reduce congestion-induced energy consumption. A model is developed that links several key components: mode choice, the relationship between travel demand and traffic speeds, the relationship between traffic speeds and fuel economies, and the heterogenous value of travel time. It is applied to the route from downtown Los Angeles to Los Angeles International Airport, where at peak hours 38,200 vehicles attempt to use the route that has an hourly capacity of 17,200 vehicles. The model estimates that, with conservative assumptions and near-term technologies, diverting 3.2% of the traffic to air taxis could produce a 15% reduction in traffic vehicle fuel use. With optimistic assumptions and mature technologies, the study estimates that diverting 20% of traffic could reduce the traffic vehicle fuel use by about 74%. The key insight is that if a small share of congested travelers switched to air taxis, motivated by private benefits of time savings, significant external benefits for other road travelers (time savings and fuel savings) and to society (reduced energy use and emissions), would ensue creating a win-win-win outcome. These estimates (which are not intended as predictions because of the stated limitations) strongly suggest the need to consider the external energy effect in future cost-benefit analyses of air taxi technologies.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%