Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research at ASBarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research at ASB
Article . 2010
Data sources: Research at ASB
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China

Authors: Chen, Dezhen; Christensen, Thomas Højlund;

Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China

Abstract

The environmental profile of two municipal solid waste incineration (MSWI) technologies with semi-dry flue gas cleaning, namely grated firing incinerators (GFI) and fluidised bed incinerators (FBI) that are commonly used in China were evaluated and compared by life-cycle assessment (LCA) using the EASEWASTE model. All emissions of key pollutants as well as energy, resource and material inputs and outputs associated with the two MSWI technologies were determined and the corresponding environmental impact potentials were modelled. Incineration of MSW with a lower heating value (LHV) around 4.5 MJ kg—1 demands that auxiliary fuel is used, and both GFI and FBI caused environmental loads by contributing with environmental impact potentials in most categories except for some saving in global warming (GW100) and hazardous waste (HW). Coal combustion in FBI is a main contributor to the environmental impact potentials and thus should always be limited to a minimum. Auxiliary fuels can be avoided when the LHV of MSW is higher than 5—6 MJ kg— 1. For all scenarios, GFI saves more global warming potentials than FBI due to its higher net power generation from combustion of MSW itself. Leachate from the bunker could be sprayed into the furnace for evaporation under high temperature, as an alternative to waste-water treatment, without major changes in the environmental profile of the incinerator. The presented evaluations may contribute to a more balanced environmental assessment of the two incineration technologies with respect to incineration of MSW with low heating values as often found in Asia and China.

Related Organizations
Keywords

Waste Products, Air Pollutants, China, Incineration, Water Pollutants, Cities

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 1%
Top 10%
Top 10%
bronze