
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of the staggered blades on unsteady pressure pulsations and flow structures of a centrifugal pump

Effects of the staggered blades on unsteady pressure pulsations of a centrifugal pump with a specific speed ns=147 are investigated by the numerical simulation method. The obtained results are compared with the original blades. To clarify the resulting effects, eight monitoring points are used to extract pressure signals at three typical working conditions, and component at the blade passing frequency fBPF is emphasized. Results show that the pump efficiency and head will be reduced by the staggered blades, and at the nominal flow rate, the reduction is about 1.5% from comparison with the original blades. For all the eight points, the staggered blades contribute to the reduction of pressure amplitudes at fBPF when the pump works at three flow rates. The averaged reduction is 15.5% at the nominal flow rate. However, the negative effect on the second harmonic of fBPF will be caused by the staggered blades, and the corresponding pressure amplitude will increase at 2fBPF. It means that the pressure pulsation energy will be redistributed among the discrete components in pressure spectrum by the staggered blades. From the TKE distribution, it is found that the TKE values on the blade pressure side will be significantly affected by the staggered blades.
- Jiangsu University China (People's Republic of)
- Jiangsu University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
