Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the I...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of the staggered blades on unsteady pressure pulsations and flow structures of a centrifugal pump

Authors: Ning Zhang; Bo Gao; Chao Li; Dan Ni; Guoping Li;

Effects of the staggered blades on unsteady pressure pulsations and flow structures of a centrifugal pump

Abstract

Effects of the staggered blades on unsteady pressure pulsations of a centrifugal pump with a specific speed ns=147 are investigated by the numerical simulation method. The obtained results are compared with the original blades. To clarify the resulting effects, eight monitoring points are used to extract pressure signals at three typical working conditions, and component at the blade passing frequency fBPF is emphasized. Results show that the pump efficiency and head will be reduced by the staggered blades, and at the nominal flow rate, the reduction is about 1.5% from comparison with the original blades. For all the eight points, the staggered blades contribute to the reduction of pressure amplitudes at fBPF when the pump works at three flow rates. The averaged reduction is 15.5% at the nominal flow rate. However, the negative effect on the second harmonic of fBPF will be caused by the staggered blades, and the corresponding pressure amplitude will increase at 2fBPF. It means that the pressure pulsation energy will be redistributed among the discrete components in pressure spectrum by the staggered blades. From the TKE distribution, it is found that the TKE values on the blade pressure side will be significantly affected by the staggered blades.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%