Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy & Environment
Article . 2018 . Peer-reviewed
License: SAGE TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exergetic analysis and pollutants emission from a rotary kiln system in a major cement manufacturing plant

Authors: Jamiu Adetayo Adeniran; Rafiu Olasunkanmi Yusuf; Adeniyi Saheed Aremu; Temitope Mariam Aareola;

Exergetic analysis and pollutants emission from a rotary kiln system in a major cement manufacturing plant

Abstract

The exergy analysis and air pollutants emission estimation from the kiln system of a major cement manufacturing plant located in Nigeria were conducted with a view to improve the level of performance of the production unit and minimize environmental effects. Material balance and exergy analysis were carried out on the system to determine the exergetic efficiency and exergy destruction rate. Pollutants emission was estimated using bottom-up emission factor approach. The physical and chemical exergy output obtained were 9.07×107 and 1.46×08 kJ/h, respectively. The exergy efficiency of the kiln system was 27.35%. The measure of entropy generation (6.53×108 kJ/h) represented a huge potential for energy savings for the unit. CO2 emission represented about 99.04% of the total criteria air pollutants emission from the kiln and an estimate of 0.90 tonnes of CO2/tonne of clinker produced was obtained. To improve the exergy efficiency and reduce pollutants emission from the kiln system, possible heat recovery options and CO2 mitigation approaches were suggested.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average