
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The asymmetric impact of public–private partnership investment in energy on CO2 emissions in Pakistan

The present study investigates the effect of public–private partnership investment in energy and renewable energy consumption on carbon dioxide (CO2) emissions, taking into account the critical role of economic growth and trade openness in Pakistan from 1992 to 2019. The linear and nonlinear autoregressive distributed lag models are employed to check the co-integration link between dependent and independent variables, further estimate short-run and long-run associations, and examine the symmetric and asymmetric effects of public–private partnership investment in energy on CO2 emissions in Pakistan. The empirical findings show that public–private partnership investment in energy reduces environmental quality by increasing CO2 emissions. Similarly, economic development and trade openness harms the atmosphere by raising CO2 emissions. On the other hand, renewable energy consumption significantly negatively affects CO2 emissions. In addition, the findings also authenticate the asymmetric link between public–private partnership investment in energy and the environment, as CO2 emissions are caused mainly by positive shocks in public–private partnership investment in energy in the short and long run. This study proposes financing renewable energy projects through public–private partnership is needed for an environmentally friendly future.
- Islamia University of Bahawalpur Pakistan
- Islamia University of Bahawalpur Pakistan
- National Defence University Finland
- National Defence University Pakistan
- Beijing Institute of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
