Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Managing municipal wastewater remediation employing alginate-immobilized marine diatoms and silver nanoparticles

Authors: Pankaj Kumar Singh; Hirak Parikh; Abhishek Saxena; Bharti Mishra; Rashi Tyagi; Mukesh Kumar Awasthi; Aravind Madhavan; +2 Authors

Managing municipal wastewater remediation employing alginate-immobilized marine diatoms and silver nanoparticles

Abstract

Wastewater remediation has become a major environmental concern in recent years, which has led scientists to look for innovative sustainable solutions. Diatoms have emerged as a potentially effective solution for wastewater treatment, primarily because of their extraordinary ability to absorb nutrients and engage in metabolic processes. The present study aims to accomplish two goals, firstly, green synthesis of silver nanoparticles (AgNPs) utilizing marine diatoms Chaetoceros sp. and Thalassiosira sp. Secondly, encapsulation of diatoms within a Ca-alginate hydrogel bead developed via the gelation method thus introducing a novel way to assess their effectiveness in nutrient bioremediation from wastewater. The study reveals that Thalassiosira sp. mediated AgNPs are very effective in removing phosphate and nitrate, with 74% and 65% removal rates respectively. Conversely, Chaetoceros sp. mediated AgNPs significantly decreased chemical oxygen demand (COD) by 73%. Furthermore, Thalassiosira sp. encapsulated in Ca-alginate hydrogel beads demonstrated significant removal rates: 64% for nitrate, 91% for phosphate, and 78% for COD, respectively. Furthermore, the biochemical profiles of both diatom-entrapped alginate beads were remarkable, and the approach shows potential for effective and sustainable wastewater treatment methods, which can further be investigated for long-term performance, scalability, and environmental impact on sustainability.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average