Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Intellige...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal lateral embedded position of piezoelectric energy harvesters under various traffic conditions with wheel-path distribution

Authors: Yangyang Zhang; Qi Lai; He Zhang; Yingwu Yang; Ji Wang; Chaofeng Lü;

Optimal lateral embedded position of piezoelectric energy harvesters under various traffic conditions with wheel-path distribution

Abstract

Piezoelectric energy harvesting from traffic load has gained extensive attention for potentiality as a renewable energy source. In existing in situ experiments, generally only one vehicle is employed, while the wheel-path of the vehicle and embedded positions of piezoelectric energy harvester (PEH) units are both fixed. However, in an actual traffic condition, vehicles travel randomly along width of pavements, which means the wheel-path varies over time and among vehicles. In this study, an electromechanical model is established for the PEH units under actual traffic conditions with wheel-path distribution, and is validated with finite element analysis and experiments. Then the electrical performance of PEH units embedded at various locations along pavements’ lateral direction is investigated under various traffic speeds. It is found that the optimal lateral embedded locations of the PEH units should be adjusted according to the prescribed traffic speed of the roads. Specifically, PEH units should be embedded at the tire-road contact areas for road with low traffic speeds (<15 m/s), while they should be embedded at the center of the pavement with high traffic speeds (>25 m/s). These mathematical results may serve as guidelines for selecting optimal lateral embedded locations for PEH units embedded in pavements.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average