Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Indoor and Built Env...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Renovating buildings by modelling energy–CO2 emissions using particle swarm optimization and artificial neural network (case study: Iran)

Authors: Roja Arjomandnia; Marjan Ilbeigi; Maryam Kazemidemneh; Alireza Nazari Hashemi;

Renovating buildings by modelling energy–CO2 emissions using particle swarm optimization and artificial neural network (case study: Iran)

Abstract

Climate change is known as a serious threat to the human species, and its significance should be considered in building design. This study aims to investigate the relationship between energy consumption and CO2 emission in Iran during the years 2018–2019 using artificial neural networks (ANNs) and regression methods. The input data were gathered and optimized by the particle swarm optimization (PSO) algorithm. Lighting, equipment load rate, wall U-value, roof U-value and people density were deliberated as effective parameters. Afterwards, the ANN was created, trained and tested by the radial basis function (RBF) algorithm; also, the data were evaluated based on statistical analysis in SPSS software. The results demonstrated R2 = 0.99 and the 45-degree line for the predicted value. Energy consumption and CO2 were reduced to 35% and 73.21%, respectively. Furthermore, CO2 emissions and energy consumption had an inverse relationship with infiltration rates (−0.201) and (−0.098). Furthermore, CO2 emission and energy consumption had a linear relation in Iran with the equation of y = 1.63x + 0.52. Moreover, based on ANOVA test, R2 linear was 0.985 and R = 0.993, illustrating significant accuracy. Architects and designers could enjoy these findings as guidelines for renovation and designing purposes so as to alleviate the negative environmental impacts of construction.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%