
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Estimation of numerical uncertainty in computational fluid dynamics simulations of a passively controlled wave energy converter

The wave loads and the resulting motions of floating wave energy converters are traditionally computed using linear radiation–diffraction methods. Yet for certain cases such as survival conditions, phase control and wave energy converters operating in the resonance region, more complete mathematical models such as computational fluid dynamics are preferred and over the last 5 years, computational fluid dynamics has become more frequently used in the wave energy field. However, rigorous estimation of numerical errors, convergence rates and uncertainties associated with computational fluid dynamics simulations have largely been overlooked in the wave energy sector. In this article, we apply formal verification and validation techniques to computational fluid dynamics simulations of a passively controlled point absorber. The phase control causes the motion response to be highly nonlinear even for almost linear incident waves. First, we show that the computational fluid dynamics simulations have acceptable agreement to experimental data. We then present a verification and validation study focusing on the solution verification covering spatial and temporal discretization, iterative and domain modelling errors. It is shown that the dominating source of errors is, as expected, the spatial discretization, but temporal and iterative errors cannot be neglected. Using hexahedral cells with low aspect ratio and 30 cells per wave height, we obtain results with less than 5% uncertainty in motion response (except for surge) and restraining forces for the buoy without phase control. The amplified nonlinear response due to phase control caused a large increase in numerical uncertainty, illustrating the difficulty to obtain reliable solutions for highly nonlinear responses, and that much denser meshes are required for such cases.
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Aalborg University Denmark
- Chalmers University of Technology Sweden
- Aalborg University Library (AUB) Denmark
- Aalborg University Denmark
Passive control, verification and validation, Verification and validation, computational fluid dynamics modelling, Numerical uncertainty, numerical uncertainty, Computational fluid dynamics modelling, Wave energy converter, passive control
Passive control, verification and validation, Verification and validation, computational fluid dynamics modelling, Numerical uncertainty, numerical uncertainty, Computational fluid dynamics modelling, Wave energy converter, passive control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
