Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Distributed Sensor Networks
Article . 2016 . Peer-reviewed
License: SAGE TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/c4...
Other literature type . 2016
Data sources: Datacite
https://dx.doi.org/10.60692/b6...
Other literature type . 2016
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wireless-powered cooperative energy aware anycast routing in wireless sensor networks

توجيه أي بث للطاقة التعاونية التي تعمل بالطاقة اللاسلكية في شبكات الاستشعار اللاسلكية
Authors: Sheeraz Ahmed; Abdulaziz Al Mazyad; Abdulaziz Al Mazyad; Nadeem Javaid; Najam ul Islam; Imran Ahmed; Abid Ali Minhas; +1 Authors

Wireless-powered cooperative energy aware anycast routing in wireless sensor networks

Abstract

A wireless-powered cooperative energy aware anycast routing protocol is proposed in this work. In contrary to conventional cooperative networks, it is considered here that all the relays did not have embedded energy supply, rather equipped with rechargeable batteries and energy harvesting units. Hence, from source signals, they accumulate sufficient harvested energy before the information is forwarded to its destination. Each relay between two basic modes will switch adaptively, which are information forwarding and energy harvesting. The research is limited to decode-and-forward scheme and fixed ratio combining, which works at the relay node of the network and the receiver end, respectively. The physical layer cooperative diversity and network layer multi-hop routing lead us to devise a minimum energy routing protocol as the joint optimization of power required for transmission at physical layer and also at network layer for the process to select a link. Simulating our algorithm demonstrates that the suggested cooperative energy aware anycast routing scheme has a better end-to-end delay and better ratio of packet delivery. Results further reveal that our proposed algorithm has improved energy consumption in comparison to the non-cooperative energy aware anycast scheme and the cooperation-based robust cooperative routing protocol scheme. Sensed data are allocated between nearby nodes by cooperative energy aware anycast routing in a cost-effective way in order to achieve maximum network lifetime.

Keywords

Ad Hoc Wireless Networks Research, Computer Networks and Communications, Wireless Energy Harvesting, Wireless Energy Harvesting and Information Transfer, Energy-Efficient Protocols, Organic chemistry, Structural engineering, Node (physics), Quantum mechanics, Layer (electronics), Engineering, FOS: Electrical engineering, electronic engineering, information engineering, Electrical and Electronic Engineering, Multi-hop Wireless Routing, Computer network, Routing (electronic design automation), Wireless Sensor Networks: Survey and Applications, Network packet, Physics, Relay, QA75.5-76.95, Power (physics), Computer science, Distributed computing, Routing protocol, Energy consumption, Anycast, Chemistry, Electronic computers. Computer science, Electrical engineering, Physical Sciences, Computer Science, Wireless Power Transfer, RF Energy Harvesting, Network layer

Powered by OpenAIRE graph
Found an issue? Give us feedback