
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Numerical investigation of CO2 emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe

Authors: Ramoshweu Solomon Lebelo; Oluwole Daniel Makinde;
Abstract
In this article, we investigate the combined effects of emission of CO2 and O2 depletion on thermal stability in a long cylindrical pipe of combustible reactive material. The cylindrical pipe loses heat by convection and radiation at the surface, and the nonlinear differential equations governing the heat and mass transfer problem are tackled numerically using Runge–Kutta–Fehlberg method coupled with shooting technique. The effects of various thermo-physical parameters on the temperature, CO2 and O2 fields, and thermal stability are presented graphically and discussed quantitatively.
Related Organizations
- Vaal University of Technology South Africa
- Vaal University of Technology South Africa
- Stellenbosch University South Africa
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
13
Top 10%
Top 10%
Top 10%
gold
Fields of Science (3) View all
Related to Research communities
Energy Research