
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
On the Hysteresis in Moisture Storage and Conductivity Measured by the Instantaneous Profile Method

The relative humidity (or the capillary pressure) and volumetric water content can be determined at specific locations inside a porous medium by means of the proposed instantaneous profile method (IPM). The measurements are carried out with temperature and relative humidity (RH) sensors as well as with time domain reflectometry probes during the whole duration of the experiment. Thus, the IPM allows a transient measurement of the moisture retention characteristic. In addition, from the spatial and temporal distributions of moisture content and RH one may calculate the moisture conductivity as a function of moisture content and RH as well. The adsorption and successive desorption experiments presented in this article have been performed on calcium silicate (a capillary active material). The results show a hysteretic behavior that appears to depend on the nature of the process. The moisture conductivity as function of RH shows a significant hystereses; however, the moisture conductivity in relation to the moisture content appears to be non-hysteretic.
- TU Dresden Germany
- Swiss Federal Laboratories for Materials Science and Technology Switzerland
- University of Technology Russian Federation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
