Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nanomaterials and Na...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nanomaterials and Nanotechnology
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nanomaterials and Nanotechnology
Article
License: CC BY
Data sources: UnpayWall
https://dx.doi.org/10.60692/fa...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/vh...
Other literature type . 2021
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Irreversibility analysis in dissipative magnetohydromagnetic flow of non-Newtonian nanomaterials

تحليل لا رجعة فيه في التدفق المغنطيسي الهيدرومغناطيسي المبدد للمواد النانوية غير النيوتونية
Authors: Tasawar Hayata; Zobia Kainata; Sohail A. Khan; Ahmed Alsaedi;

Irreversibility analysis in dissipative magnetohydromagnetic flow of non-Newtonian nanomaterials

Abstract

The theme of this article is to scrutinize the entropy rate in hydromagnetic flow of Reiner–Philippoff nanofluid by a stretching surface. Energy equation is developed through first law of thermodynamic with dissipation and Joule heating. Furthermore, random and thermophoretic motion is discussed. Additionally, binary reaction is discussed. Physical feature of irreversibility analysis is discussed. Nonlinear expression is obtained by suitable transformation. The obtained systems are solved through the numerical method (bvp4c). Variation of entropy rate, thermal field, velocity profile, and concentration against sundry variables are discussed. Computational outcomes of thermal and mass transport rate for influential parameters are studied in tabularized form. A reverse effect holds for thermal field and velocity through magnetic variable. Higher Bingham number leads to a rise in velocity field. An intensification in thermal field and concentration is noted for thermophoretic variable. An enhancement in fluid variable leads to augments velocity. An increment in entropy analysis is seen for magnetic effect. Larger estimation of diffusion variable improves entropy rate. A reduction in concentration is noticed for reaction variable.

Related Organizations
Keywords

Heat Transfer Enhancement in Nanofluids, Composite material, Dissipative system, Turbulent Flows and Vortex Dynamics, Hydrodynamic Turbulence, Biomedical Engineering, Computational Mechanics, Fluid Mechanics, Nanofluid, FOS: Medical engineering, Mechanics, Quantum mechanics, Nanofluids, Thermal diffusivity, Engineering, Nanoscale Thermodynamics, Thermal, Entropy (arrow of time), Stochastic Thermodynamics and Fluctuation Theorems, Physics, Joule heating, Statistical and Nonlinear Physics, Materials science, Magnetic field, Physics and Astronomy, Dissipation, Physical Sciences, Nonlinear system, Thermodynamics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold