
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Environmental sustainability in endodontics. A life cycle assessment (LCA) of a root canal treatment procedure

Abstract Background To analyse via life cycle analysis (LCA) the global resource use and environmental output of the endodontic procedure. Methodology An LCA was conducted to measure the life cycle of a standard/routine two-visit RCT. The LCA was conducted according to the International Organization of Standardization guidelines; ISO 14040:2006. All clinical elements of an endodontic treatment (RCT) were input into OpenLCA software using process and flows from the ecoinvent database. Travel to and from the dental clinic was not included. Environmental outputs included abiotic depletion, acidification, freshwater ecotoxicity/eutrophication, human toxicity, cancer/non cancer effects, ionizing radiation, global warming, marine eutrophication, ozone depletion, photochemical ozone formation and terrestrial eutrophication. Results An RCT procedure contributes 4.9 kg of carbon dioxide equivalent (CO2 eq) emissions. This is the equivalent of a 30 km drive in a small car. The main 5 contributors were dental clothing followed by surface disinfection (isopropanol), disposable bib (paper and plastic), single-use stainless steel instruments and electricity use. Although this LCA has illustrated the effect endodontic treatment has on the environment, there are a number of limitations that may influence the validity of the results. Conclusions The endodontic team need to consider how they can reduce the environmental burden of endodontic care. One immediate area of focus might be to consider alternatives to isopropyl alcohol, and look at paper, single use instrument and electricity use. Longer term, research into environmentally-friendly medicaments should continue to investigate the replacement of current cytotoxic gold standards with possible natural alternatives. Minimally invasive regenerative endodontics techniques designed to stimulate repair or regeneration of damaged pulp tissue may also be one way of improving the environmental impact of an RCT.
- Trinity College Dublin Ireland
- Malmö University Sweden
- Dublin Dental University Hospital Ireland
690, 610, Isopropyl alcohol, Environment, Odontologi, Global Warming, Endodontics, 617, Animals, Humans, Life Cycle Stages, LCA, RCTx, RK1-715, Eutrophication, Sustainability, Dentistry, Single use instruments, Dental Pulp Cavity, Life cycle analysis, Dental gown, Research Article
690, 610, Isopropyl alcohol, Environment, Odontologi, Global Warming, Endodontics, 617, Animals, Humans, Life Cycle Stages, LCA, RCTx, RK1-715, Eutrophication, Sustainability, Dentistry, Single use instruments, Dental Pulp Cavity, Life cycle analysis, Dental gown, Research Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
