
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Time series forecasting model for non-stationary series pattern extraction using deep learning and GARCH modeling

AbstractThis paper presents a novel approach to time series forecasting, an area of significant importance across diverse fields such as finance, meteorology, and industrial production. Time series data, characterized by its complexity involving trends, cyclicality, and random fluctuations, necessitates sophisticated methods for accurate forecasting. Traditional forecasting methods, while valuable, often struggle with the non-linear and non-stationary nature of time series data. To address this challenge, we propose an innovative model that combines signal decomposition and deep learning techniques. Our model employs Generalized Autoregressive Conditional Heteroskedasticity (GARCH) for learning the volatility in time series changes, followed by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for data decomposition, significantly simplifying data complexity. We then apply Graph Convolutional Networks (GCN) to effectively learn the features of the decomposed data. The integration of these advanced techniques enables our model to fully capture and analyze the intricate features of time series data at various interval lengths. We have evaluated our model on multiple typical time-series datasets, demonstrating its enhanced predictive accuracy and stability compared to traditional methods. This research not only contributes to the field of time series forecasting but also opens avenues for the application of hybrid models in big data analysis, particularly in understanding and predicting the evolution of complex systems.
- South China Agricultural University China (People's Republic of)
- University of Business and Technology Saudi Arabia
- King Saud University Saudi Arabia
- Universidad de la Costa Colombia
- King Saud University Saudi Arabia
TK7885-7895, Computer engineering. Computer hardware, Electronic computers. Computer science, QA75.5-76.95
TK7885-7895, Computer engineering. Computer hardware, Electronic computers. Computer science, QA75.5-76.95
