
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Enhanced energy savings in enzymatic refining of hardwood and softwood pulp
Abstract Background Pulp refining is an energy consuming, but integral part of paper production with the aim to increase tensile strength and smoothness of paper sheets. Commercial enzyme formulations are used to lower the energy requirements by pre-treatment of pulp before refining. However, a high number of different commercial enzyme products are available on the market containing enzymes of varying origin and composition, which complicates the prediction of their behavior, especially using different pulp types. Results Endoglucanase-rich enzyme formulations were characterized regarding enzyme activity at different temperatures, resulting in a significant decrease of activity above 70 °C. Some enzyme preparations additionally contained arabinosidase, xylanase and β-glucosidase activity consequently resulting in a release of xylose and glucose from pulp as determined by high-performance liquid chromatography. Interestingly, one enzyme formulation even showed lytic polysaccharide monooxygenase (LPMO) activity of 3.05 nkat mg−1. A correlation between enzyme activity using the endoglucanase specific derivatized cellopentaose (CellG5) substrate and enzyme performance in laboratory PFI (Papirindustriens forskningsinstitut) refining trials was observed on softwood pulp resulting in a maximum increase in the degree of refining values from 27.7°SR to 32.7°SR. When added to a purified endoglucanase enzyme (31.6°SR), synergistic effects were found for cellobiohydrolase II (34.7°SR) or β-glucosidase enzymes (35.7°SR) in laboratory refining. Comparison with previously obtained laboratory refining results on hardwood pulp allowed differences in enzyme performance based on varying pulp types to be elucidated. Conclusions Interestingly, the individual enzymes indeed showed different refining effects on softwood and hardwood pulp. This difference could be predicted after development of an adapted enzyme activity assay by combination of the derivatized cellopentaose CellG5 substrate with either softwood or hardwood sulfate pulp.
- Graz University of Technology Austria
- Austrian Centre of Industrial Biotechnology (Austria) Austria
- TECHNISCHE UNIVERSITAET GRAZ Austria
- University of Natural Resources and Life Sciences Austria
- University of Johannesburg South Africa
Paper production, Hardwood, Refining, TJ807-830, Energy industries. Energy policy. Fuel trade, Renewable energy sources, Softwood, CellG5, HD9502-9502.5, Endoglucanase
Paper production, Hardwood, Refining, TJ807-830, Energy industries. Energy policy. Fuel trade, Renewable energy sources, Softwood, CellG5, HD9502-9502.5, Endoglucanase
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
