Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GFZpublic (German Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geothermal Energy
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geothermal Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geothermal Energy
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrogen sulfide removal from geothermal fluids by Fe(III)-based additives

Authors: S. Regenspurg; J. Iannotta; E. Feldbusch; F. J. Zimmermann; F. Eichinger;

Hydrogen sulfide removal from geothermal fluids by Fe(III)-based additives

Abstract

AbstractA new method to remove hydrogen sulfide from geothermal fluids during well operation was tested in situ at a geothermal site in Vienna (Austria). For this purpose, ferric iron was added either as granulated iron hydroxide or as FeCl3 solution into a reaction vessel containing the thermal water directly removed from the wells. From the container, the water would be pumped through a particle filter. Physicochemical parameters as well as sulfide were measured constantly over time before and after the filter. It was found that the sulfide was fully removed from the water by both iron additives. While the addition of FeCl3 led first to the formation of black iron(II) sulfide (FeS), which subsequently oxidized in presence of oxygen to Fe(III) hydroxide, no visible change of the granulated iron hydroxide was observed. The reaction time was longer when using the Fe(III) hydroxide additive as compared to the FeCl3 (completed in less than 20 min) but could be enhanced by increasing the amount of added particles. In all experiments the pH was constantly rising during the reaction from about 6.3 to 7.5, which was explained by loss of protons due to purging out of the gaseous H2S. The redox value, which was measured over time, remained rather constant after addition of granulated iron hydroxide (about −350 mV), but strongly increased from −350 mV to −50 mV after adding the FeCl3 suggesting a strong electron-consuming reaction. This can be explained by a two-step reaction: first, the Fe(III) was reduced to Fe(II) by oxidation of either sulfide or thiosulfate to sulfate. Afterward, the Fe(II) oxidized again by dissolved oxygen forming orange Fe(III) hydroxides. The application of the investigated method during operation of geothermal wells could prevent H2S-induced corrosion and would eliminate the toxic effects of this gas.

Country
Germany
Keywords

QE1-996.5, Hydrogen sulfide, Iron sulfur redox system, TJ807-830, Geology, Renewable energy sources, Geothermal fluid, Iron additive, Removal of H2S

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold