Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geoscience Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geoscience Letters
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geoscience Letters
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling the impacts of projected climate change on wheat crop suitability in semi-arid regions using the AHP-based weighted climatic suitability index and CMIP6

Authors: Karam Alsafadi; Shuoben Bi; Hazem Ghassan Abdo; Hussein Almohamad; Basma Alatrach; Amit Kumar Srivastava; Motrih Al-Mutiry; +3 Authors

Modeling the impacts of projected climate change on wheat crop suitability in semi-arid regions using the AHP-based weighted climatic suitability index and CMIP6

Abstract

AbstractDue to rapid population growth and the limitation of land resources, the sustainability of agricultural ecosystems has attracted more attention all over the world. Human activities will alter the components of the atmosphere and lead to climate change, which consequently affects crop production badly. In this context, wheat is considered an important crop and ranks as one of the top strategic crops globally. The main objective of this research is to develop a new approach (a weighted climatic suitability index) for evaluating the climate suitability for wheat production. The specific objectives are to project the impact of future climate change on wheat suitability using three models based on WCSI and CMIP6-based projections and to identify the most vulnerable area to climate change and productivity reduction. The climatic criteria for wheat production were selected and classified into eight indicators based on the Sys' scheme and the FAO framework, and then the weighted overlay approach was used in conjunction with the analytic hierarchy process. To confirm the reliability of the integrated WCSI, we determined the nonlinear curve fitting of integrated WCSI-induced wheat yields by the exponential growth equation. Finally, the CMIP6-GCMs projected from three shared socioeconomic pathways were used for WCSI mapping and predicting wheat yields in the short and long term (Southern Syria was selected as a case study). The results show that the nonlinear correlation between wheat yields and the integrated WCSI was 0.78 (R2 = 0.61) confirming the integrated WCSI's reliability in reflecting yield variation caused by climate suitability. The results indicated that WCSI for wheat will be lower over the study area during 2080–2100 compared to the current climate. During 2080–2100, the wheat yield is projected to decrease by 0.2–0.8 t. ha−1 in the western parts of the study area. The findings of this study could be used to plan and develop adaptation strategies for sustainable wheat production in the face of projected climate change. The results of the study will also help in the strategic planning of wheat production in Syria under the projected climate. The results of this research are limited to small areas as a case study, although they are not relevant to similar regions worldwide. However, the study employs novel analytical methods that can be used broadly.

Keywords

QE1-996.5, Science, Q, Geology, Agro-climatic indices, Agricultural sustainability, Climate change, Yield forecasting, CMIP6

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%
gold