
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Tracking-dispatch of a combined wind-storage system based on model predictive control and two-layer fuzzy control strategy

AbstractTo maximize improving the tracking wind power output plan and the service life of energy storage systems (ESS), a control strategy is proposed for ESS to track wind power planning output based on model prediction and two-layer fuzzy control. First, based on model predictive control, a model with deviations of grid-connected power from the planned output and the minimum deviation of the remaining capacity of the ESS from the ideal value is established as the target. Then, when the grid-connected power exceeds the allowable deviation band of tracking, the weight coefficients in the objective function are adjusted by introducing the first layer of fuzzy control rules, combining the state of charge (SOC) of the ESS with the dynamic tracking demand of the planned value of wind power. When the grid-connected power is within the tracking allowable deviation band, the second layer of fuzzy control rules is used to correct the charging and discharging power of the ESS to improve its ability to track the future planned deviation while not crossing the limit. By repeatedly correcting the charging and discharging power of the ESS, its safe operation and the multitasking execution of the wind power plan output tracking target are ensured. Finally, taking actual data from a wind farm as an example, tests on a simulation platform of a combined wind-storage power generation system verify the feasibility and superiority of the proposed control strategy.
- Hunan City University China (People's Republic of)
- Hunan Women'S University China (People's Republic of)
- Hunan Women'S University China (People's Republic of)
TK1001-1841, Distribution or transmission of electric power, Energy storage system, Track planned output, TK3001-3521, Two-layer fuzzy control, Production of electric energy or power. Powerplants. Central stations, Wind power, Model predictive control
TK1001-1841, Distribution or transmission of electric power, Energy storage system, Track planned output, TK3001-3521, Two-layer fuzzy control, Production of electric energy or power. Powerplants. Central stations, Wind power, Model predictive control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
