
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Integrated planning of grids and energy conversion units in municipal multi-energy carrier systems

AbstractThe ongoing energy transition requires the planning of low-emission municipal energy supply systems. These systems comprise distribution grids for electricity, gas, and heat, as well as energy conversion units such as heating systems. This paper presents a linear optimization model considering these elements in order to identify the cost-minimizing system design while achieving a given CO2 emission limit. The model is applied to an exemplary test case comprising 900 buildings. In order to increase scalability of the model to larger system sizes, the effect of reducing the spatial resolution on the optimization results is analyzed. The results show that the effect is small and that spatial aggregation is indeed a valid approach to reduce problem complexity and to allow significant speedups, reaching a factor of 200 for the given case study.
- Aachen University Germany
- RWTH Aachen University Germany
Multi-energy carrier systems, Sector coupling, Municipal energy supply, HD9502-9502.5, Energy industries. Energy policy. Fuel trade
Multi-energy carrier systems, Sector coupling, Municipal energy supply, HD9502-9502.5, Energy industries. Energy policy. Fuel trade
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
