
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Non-intrusive load monitoring techniques for the disaggregation of ON/OFF appliances

handle: 11583/2974023
AbstractNowadays, Non-Intrusive Load Monitoring techniques are sufficiently accurate to provide valuable insights to the end-users and improve their electricity behaviours. Indeed, previous works show that commonly used appliances (fridge, dishwasher, washing machine) can be easily disaggregated thanks to their abundance of electrical features. Nevertheless, there are still many ON/OFF devices (e.g. heaters, kettles, air conditioners, hair dryers) that present very poor power signatures, preventing their disaggregation with traditional algorithms. In this work, we propose a new online clustering method exploiting both operational features (peak power, duration) and external features (time of use, day of week, weekday/weekend) in order to recognize ON/OFF devices. The proposed algorithm is intended to support an existing disaggregation algorithm that is already able to classify at least 80% of the total energy consumption of the house. Thanks to our approach, we improved the performance of our existing disaggreation algorithm from 80% to 87% of the total energy consumption in the monitored houses. In particular, we found that 85% of the clusters were identified by only using operational features, while external features allowed us to identify the remaining 15% of the clusters. The algorithm needs to collect on average less than 40 operations to find a cluster, which demonstrates its applicability in the real world.
Computer Networks and Communications, Appliance load monitoring, Energy Engineering and Power Technology, Smart grids, Energy Research, ON/OFF devices, Energy industries. Energy policy. Fuel trade, Online clustering, Smart grids; Appliance load monitoring; Online clustering; ON/OFF devices, HD9502-9502.5, Information Systems
Computer Networks and Communications, Appliance load monitoring, Energy Engineering and Power Technology, Smart grids, Energy Research, ON/OFF devices, Energy industries. Energy policy. Fuel trade, Online clustering, Smart grids; Appliance load monitoring; Online clustering; ON/OFF devices, HD9502-9502.5, Information Systems
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
