Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Informaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Informatics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Informatics
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A proposed PMU-based voltage stability and critical bus detection method using artificial neural network

Authors: Lesnanto Multa Putranto; Izzuddin Fathin Azhar;

A proposed PMU-based voltage stability and critical bus detection method using artificial neural network

Abstract

AbstractVoltage stability detection is currently still becoming the main issue in the modern integrated renewable energy power systems. To assess the voltage stability, the classical methods based on continuation power flow (CPF) technique were used to show nose curve. However, the classical methods require complete model of power system and long computation time. Data driven analysis and synchronized real time measurement technologies currently are developing in power systems monitoring, including the stability detection. The detection method is built based on the historical event model and uses the real time measurement as an input. For that reason, the algorithm to detect the voltage instability and critical bus is proposed using the artificial neural network (ANN) technique to represent the historical event model using the PMU measurement data. The ANN model architecture for this application is developed by creating seven hidden layers consisting of one normalization, four rectifier linear unit, one softmax and one sigmoid layer. To warrant the accuracy, the k-fold cross-validation is used. The algorithm is simulated on modified IEEE 14 test system which consider different loading scenario, line contingency, number of PMU and Photovoltaic (PV) integration. To mimic the actual historical data, the synthetic data is generated and labelled. The result shows that the proposed method can represent the complete power system model by giving high accuracy which for voltage stability detection is > 97% and critical buses detection is > 96% for all scenarios. Moreover, the required computation time is between 16 and 18 s per detection which makes the scalability to the real time detection is reasonable.

Related Organizations
Keywords

Artificial neural network, Data driven model, HD9502-9502.5, Prediction accuracy, Energy industries. Energy policy. Fuel trade, Voltage stability detection

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%