Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The AAPS Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The AAPS Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The AAPS Journal
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The AAPS Journal
Article . 2011
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterisation and Deposition Studies of Recrystallised Lactose from Binary Mixtures of Ethanol/Butanol for Improved Drug Delivery from Dry Powder Inhalers

Authors: Kaialy, Waseem; Martin, Gary P.; Ticehurst, Martyn D.; Royall, Paul; Mohammad, Mohammad A.; Murphy, John; Nokhodchi, Ali;

Characterisation and Deposition Studies of Recrystallised Lactose from Binary Mixtures of Ethanol/Butanol for Improved Drug Delivery from Dry Powder Inhalers

Abstract

Dry powder inhaler formulations comprising commercial lactose-drug blends can show restricted detachment of drug from lactose during aerosolisation, which can lead to poor fine particle fractions (FPFs) which are suboptimal. The aim of the present study was to investigate whether the crystallisation of lactose from different ethanol/butanol co-solvent mixtures could be employed as a method of altering the FPF of salbutamol sulphate from powder blends. Lactose particles were prepared by an anti-solvent recrystallisation process using various ratios of the two solvents. Crystallised lactose or commercial lactose was mixed with salbutamol sulphate and in vitro deposition studies were performed using a multistage liquid impinger. Solid-state characterisation results showed that commercial lactose was primarily composed of the α-anomer whilst the crystallised lactose samples comprised a α/β mixture containing a lower number of moles of water per mole of lactose compared to the commercial lactose. The crystallised lactose particles were also less elongated and more irregular in shape with rougher surfaces. Formulation blends containing crystallised lactose showed better aerosolisation performance and dose uniformity when compared to commercial lactose. The highest FPF of salbutamol sulphate (38.0 ± 2.5%) was obtained for the lactose samples that were crystallised from a mixture of ethanol/butanol (20:60) compared to a FPF of 19.7 ± 1.9% obtained for commercial lactose. Engineered lactose carriers with modified anomer content and physicochemical properties, when compared to the commercial grade, produced formulations which generated a high FPF.

Country
United Kingdom
Keywords

Butanols, Chemistry, Pharmaceutical, 610, Lactose, Microscopy, Atomic Force, 630, Excipients, Drug Delivery Systems, Spectroscopy, Fourier Transform Infrared, Image Processing, Computer-Assisted, Albuterol, Particle Size, Chromatography, High Pressure Liquid, Aerosols, 660, Calorimetry, Differential Scanning, Ethanol, Dry Powder Inhalers, Bronchodilator Agents, Microscopy, Electron, Scanning, Powders, Crystallization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
bronze