
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fourier Transform near Infrared Assessment of Biomass Composition of Shrub Willow Clones (Salix sp.) for Optimal Bio-Conversion Processing

doi: 10.1255/jnirs.950
handle: 20.500.14243/252477
Biomass, typically obtained from fast growing plants or over-stocked agricultural products, has been widely recognised as a replacement for traditional energy sources. The challenge is, however, to provide biomass feedstock with optimised properties best suited for downstream conversion. Willow ( Salix sp.) is one of the most common hardwood species suitable for short-rotation forestry. The goal of this research was to explore the potential of the near infrared (NIR) spectroscopy to evaluate the chemical composition of several willow clones. It was shown that near infrared spectroscopy can be an alternative technique to standard analytical methods supporting research and development of biomass production technologies. Partial least squares (PLS) regression models for quantitative prediction of wood components (lignin, cellulose, holocellulose, pentosans and extractive components soluble in hot/cold water, 1% NaOH and organic solvents) were developed. Using NIR spectroscopy, it was possible to discriminate different willow clones and to assign these into groups by means of principal components analysis (PCA).
- Trees and Timber Institute Italy
- National Research Council Italy
- National Research Council United States
- National Academies of Sciences, Engineering, and Medicine United States
Wood chemical composition, Bio-conversion, Biomass, Willow clones, FT-NIR
Wood chemical composition, Bio-conversion, Biomass, Willow clones, FT-NIR
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
