
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Demonstrating clean energy transition scenarios in sector-coupled and renewable-based energy communities

Background Energy communities facilitate several advantages, including energy autonomy, reduced greenhouse gas emissions, poverty mitigation, and regional economic development. They also empower citizens with decision-making and co-ownership prospects in community renewable projects. Integrating renewable energy sources and sector coupling is a crucial strategy for flexible energy systems. However, demonstrating clean energy transition scenarios in these communities presents challenges, including technology integration, flexibility activation, load reduction, grid resilience, and business case development. Methods Based on the system of systems approach, this paper introduces a 4-step funnel approach and a 4-step reverse funnel approach to systematically specify and detail demonstration scenarios for energy community projects. The funnel approach involves four steps. First, it selects demonstration scenarios promoting energy-efficient state-of-the-art renewable technologies and storage systems, flexibility through demand side management techniques, reduced grid dependence, and economic viability. Second, it lists all existing and planned project technologies, analysing energy flows. Third, it plans actions at different levels to implement the demonstration scenarios. Fourth, it validates the strategies using key performance indicators (KPI) to quantify the effectiveness of the planned measures. Furthermore, the reverse funnel approach delves deeper into the demonstration scenarios. The four steps involve identifying stakeholder perspectives, describing scenario scopes, listing conditions for realisation, and outlining business models, including value chains and economic assumptions. Results This approach provides a detailed analysis of the demonstration scenarios, considering actors, objectives, boundary conditions, and business assumptions. The methodologies are exemplified in three diverse European energy communities extending across residential, commercial, tertiary, and industrial establishments, allowing power-to-x and sector coupling opportunities. The paper also suggested thirteen KPIs for validating renewable-focused energy community projects. Conclusions Finally, the paper recommends increased collaboration between energy communities, knowledge sharing, stakeholder engagement, transparent data collection and analysis, continuous feedback, and method improvement to mitigate policy, technology, business, and market uncertainties.
- University of Freiburg Germany
- Fraunhofer Society Germany
- Fraunhofer Institute for Solar Energy Systems Germany
Reverse Funnel Approach, Energy Community, Energy Community;Sector Coupling;System of Systems;Demonstration Scenario;Energy Transition;Funnel Approach;Reverse Funnel Approach;Flexibility, Energy Transition, Funnel Approach, Sector coupling, System of Systems, Demonstration Scenario, Method Article, Flexibility, Sector Coupling
Reverse Funnel Approach, Energy Community, Energy Community;Sector Coupling;System of Systems;Demonstration Scenario;Energy Transition;Funnel Approach;Reverse Funnel Approach;Flexibility, Energy Transition, Funnel Approach, Sector coupling, System of Systems, Demonstration Scenario, Method Article, Flexibility, Sector Coupling
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
