Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DEStech Transactions...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Material Flow Analysis of the End-of-Life Photovoltaic Waste in Australia

Authors: Nazmul Huda; Masud Behnia; S. M. Seyed Mahmoudi; Zahraossadat Alavi;

Material Flow Analysis of the End-of-Life Photovoltaic Waste in Australia

Abstract

The photovoltaic module capacity has been growing remarkably in Australia from only 0.777 MW in 2001 to 8000 MW in 2018. The main reasons behind this evolution is, consumer awareness about the PV panels’ reliability and durability, overall environmental benefits, and government encouragement by providing reasonable tariffs. The useful lifetime of PV modules is around 30 years; after which they are converted to waste. As a result, a huge amount of outdated photovoltaic modules will be discarded and consigned to the waste stream in the near future in Australia. This paper analyses the potential emerging PV waste flow that will be generated between 2031 and 2047 in Australia and highlights the proportion of the waste in terms of the types of materials. It is predicted that the cumulative PV waste will reach around 1 million tonnes. The main components of the waste are 554 kilotonnes (kt) of Glass, followed by 124 kilotonnes of Aluminum. PV wastes are classified into different groups based on their characteristics, and the analysis results show that the future PV waste will contain about 344 tonnes of the precious metals like Ag, 63 tonnes of hazardous types of metals like Cd, Pb and Se, as well as the 4103 tonnes of other the critical substances. Finally, this paper sheds more valuable insights into the management pathway of this complex waste from different perspectives such as policy and regulation, recycling and reverse logistics supply chain.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold