
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Some Aspects of Reducing Greenhouse Gas Emissions by Using Biofuels


Serhii Litvak

Olga Litvak
The article is devoted to a study of the issues related to the processes of reducing the greenhouse gas emissions using different types of biofuels. The dynamics of carbon dioxide emissions in the global energy sector were analyzed and it was determined that a stable level of the CO2 emissions in the last three years is due to introduction of the technologies with the use of renewable energy sources by developed countries. It was proven that the assessment of total greenhouse gas emissions requires an analysis of emissions throughout the life cycle of a biofuel. The impact of a biofuel on the climate change depends on the raw material from which it is produced, and which has a decisive influence on its chemical composition and performance. It was established that a significant role in ensuring energy security and preventing climate change is attributed to the development of biotechnologies, unrelated to the risks of agricultural production. The use of a biofuel from lignocellulose raw material may be more efficient in terms of reducing the greenhouse gas emissions. A biofuel, obtained from the processing of microalgae, also has important prospects. The ability of microalgae to bind atmospheric carbon dioxide may have a positive effect on solving the problem of greenhouse effect.
microalgae, lignocellulose raw materials, biodiesel, global warming, Environmental technology. Sanitary engineering, carbon dioxide emission, Environmental sciences, low carbon economy, GE1-350, TD1-1066, bioethanol
microalgae, lignocellulose raw materials, biodiesel, global warming, Environmental technology. Sanitary engineering, carbon dioxide emission, Environmental sciences, low carbon economy, GE1-350, TD1-1066, bioethanol
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
