
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhancement of Dairy Wastewater Treatment in a Combined Anaerobic Baffled and Biofilm Reactor with Magneto-Active Packing Media

In this study, a new reactor concept was designed for combining the advantages of anaerobic baffled reactors and biofilm reactors for treating dairy wastewater. The magneto-active microporous packing media manufactured by extrusion technology and modified by the addition of relevant amounts of metal catalysts and magnetic activation was used. The effects of active packing media placing in the different functional areas (hydrolysis or methanogenic) on the reactor performance (organic matter and nutrients removal, biogas production) were studied. The highest biogas production of 337 L/d and biogas yield of 415 mL/g CODremoved were achieved when the packing media with magnetic properties were placed in the methanogenic tanks. A stimulatory effect of placing the active packing media in methanogenic tanks on organic matter removal (86% as COD) and suspended solids elimination from wastewater were noted, however magnetic properties did not contribute higher organic matter and nutrients removal. Incorporation of metals into the plastic packing media enhanced phosphorus removal (85 - 87%).
compartmentalized reactor design, dairy sewage, phosphorus removal, magneto-active support medium, Environmental technology. Sanitary engineering, biofilm reactor, Environmental sciences, biogas, GE1-350, TD1-1066
compartmentalized reactor design, dairy sewage, phosphorus removal, magneto-active support medium, Environmental technology. Sanitary engineering, biofilm reactor, Environmental sciences, biogas, GE1-350, TD1-1066
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
