
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mixing of the Confined Jet of Mist Flow.

doi: 10.1299/jsmeb.39.381
Confined jets of two-phase mist flow are important in the development of a two-phase ejector for the refrigeration cycle. However, the flow characteristics of the two-phase ejector have not been elucidated to date due to the nonequilibrium of velocity and temperature. In this study, the mixing characteristics of two-phase mist flow in the two-phase ejector were investigated experimentally. The pressure increases in the mixing section and the diffuser of the ejector were measured. The following results were obtained by comparison of the measured pressure increase with that calculated using a simple theory. Increasing the length and decreasing the diameter of the mixing section were effective for raising the pressure. The energy efficiency of the two-phase ejector used in this experiment was approximately 10%. This efficiency should be increased by improving the mixing characteristics of the ejector and the nozzle efficiency.
・rights:日本機械学会・rights:本文データは学協会の許諾に基づきCiNiiから複製したものである・relation:isVersionOf:http://ci.nii.ac.jp/naid/110002981385/
Mutiphase_Flow, Refrigeration, Jet, Nozzle, Pipe_Flow, Diffuser
Mutiphase_Flow, Refrigeration, Jet, Nozzle, Pipe_Flow, Diffuser
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
