Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thermal S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thermal Science and Technology
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical and Experimental Investigation of Intra-Particle Heat Transfer and Tar Decomposition during Pyrolysis of Wood Biomass

Authors: Pious O. Okekunle; Teeranai Pattanotai; Hirotatsu Watanabe; Ken Okazaki;

Numerical and Experimental Investigation of Intra-Particle Heat Transfer and Tar Decomposition during Pyrolysis of Wood Biomass

Abstract

Pyrolysis of cylindrical woody biomass has been investigated both numerically and experimentally with emphasis on intra-particle heat transfer and tar decompostion. In experiment, wood cylinder of 8 mm diameter and 9 mm length was pyrolyzed in an infrared reactor exposed to both convective and radiative heat fluxes in argon environment. The final reactor temperature was 973 K, and heating rate was 5, 10 and 30 K/s. Three K-type thermocouples were located in the sample to measure intra-particle temperature history. The weight fraction history and intra-particle temperature profiles were measured at different runs. Tar was obtained at a cold trap. In calculation, a two-dimensional, unsteady state single particle model was developed and used to simulate the pyrolysis process. Wood cylinder was modeled as an isotropic porous solid. Solid mass conservation equations were solved by using first-order Euler Implicit Method. Gas phase mass conservation equations and energy conservation equation were discretised by finite volume method. In order to investigate the effect of intra-particle heat transfer, simulations were carried out, first, by considering temperature gradient and second, by assuming uniform temperature within the sample. When temperature gradient was considered, simulation results were in good agreement with experimental data. When uniform intra-particle temperature was used in the simulation, simulation results were quite different from experimental measurements, the degree of difference increasing with increase in heating rate. Both calculation and experiment showed tar yield decreased with increasing heating rate. This was because tar formation reaction and intra-particle tar decomposition reactions were enhanced by increase in heating rate but the latter was dominant. It was shown that intra-particle heat transfer and tar decomposition played an important role in pyrolysis characteristics of wood cylinder.

Related Organizations
Keywords

biomass, Mechanics of engineering. Applied mechanics, TA349-359, pyrolysis, TJ1-1570, Mechanical engineering and machinery, intra-particle heat transfer and intra-particle tar decompostion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
gold