Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fusion Science & Tec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fusion Science & Technology
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrodynamics of Conically Guided Fast Ignition Targets

Authors: Hatchett, S. P.; Clark, D.; Tabak, M.; Turner, R. E.; Stoeckel, C.; Stephens, R. B.; Shiraga, H.; +1 Authors

Hydrodynamics of Conically Guided Fast Ignition Targets

Abstract

The fast ignition (FI) concept requires the generation of a compact, dense, pure fuel mass accessible to an external ignition source. The current baseline FI target is a shell fitted with a re-entrant cone extending to near its center. Conventional direct or indirect drive collapses the shell near the tip of the cone and then an ultra-intense laser pulse focused to the inside cone tip generates high-energy electrons to ignite the dense fuel. Theoretical investigations of this concept with a modest 2-D calculational scheme have sparsely explored the large design space and the tradeoffs available to optimize compaction of the fuel and maintain the integrity of the cone. Experiments have generally validated the modeling while revealing additional complexities. Away from the cone, the shell collapses much as does a conventional implosion, generating a hot, low-density inner core plasma which exhausts out toward the tip of the cone. The hot, low-density inner core can impede the compaction of the cold fuel, lowering the implosion/burn efficiency and the gain, and jetting toward the cone tip can affect the cone integrity. Thicker initial fuel layers, lower velocity implosions, and drive asymmetries can lead to decreased efficiency in converting implosion kinetic energy into compression.more » Ignition and burn hydrodynamic studies have revealed strategies for generating additional convergence and compression in the FI context. We describe 2-D and 1-D approaches to optimizing designs for cone-guided fast-ignition.« less

Country
United States
Keywords

General Physics, Design, Targets, Lasers, Compression, Velocity, Electrons, Efficiency, Ignition, Plasma, Kinetic Energy, Cones, 42 Engineering, Hydrodynamics, 71 Classical And Quantum Mechanics, Implosions, Convergence, Simulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 10%
bronze
Related to Research communities
Energy Research