
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Predicting the potential suitable habitats of Alsophila spinulosa and their changes.

pmid: 33650363
Alsophila spinulosa is a rare and endangered relict fern species. With the Maxent model, we predicted the global potential suitable habitat and its future changes for A. spinulosa. We evaluated the accuracy of our prediction based on the receiver operating characteristic curve (ROC), in order to provide reference for the protection, detection and cultivation of its resources. The results showed that most potential suitable habitat for A. spinulosa would be in Asia and few in North Ame-rica, Central America, Madagascar, La Réunion, Mauritius, Seychelles, New Zealand, New Caledonia and Fiji. The global potential suitable habitat for A. spinulosa under current climate conditions encompassed 357.1×104 km2, with Asia accounting for 88.4% and China for 49.5% of the total. The highly suitable habitat for A. spinulosa in China would be mainly in Yunnan-Guizhou Plateau, Sichuan Basin, south of the Nanling Mountains and Taiwan Island. The critical factors driving the distribution of A. spinulosa would be the precipitation of warmest quarter, July average precipita-tion, temperature seasonality and mean diurnal range. Under the SSP1_2.6 climate scenario, the global potential suitable habitat for A. spinulosa would decrease by 7.8% from 2041 to 2060, and increase by 3.2% from 2081 to 2100. Under the SSP2_4.5 climate scenario, it would increase by 2.9% from 2041 to 2060 and by 7.2% from 2081 to 2100. Under the SSP5_8.5 climate scenario, it would increase by 3.3% from 2041 to 2060 and by 5.3% from 2081 to 2100.
- Zhejiang Ocean University China (People's Republic of)
- Zhejiang Ocean University China (People's Republic of)
China, Asia, Climate, Climate Change, Taiwan, Animals, Ecosystem
China, Asia, Climate, Climate Change, Taiwan, Animals, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
