Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relationship between phenology of vegetation canopy and phenology of tree cambium in Helan Mountains, China.

Authors: Ming-Ming Li; Gang Li;

Relationship between phenology of vegetation canopy and phenology of tree cambium in Helan Mountains, China.

Abstract

Based on 98 Chinese pine (Pinus tabuliformis) tree-ring width data, normalized diffe-rence vegetation index (NDVI) data and land cover data in the Helan Mountains, we used VS-oscilloscope model to simulate the radial growth process of Chinese pine and to examine the relationship between vegetation canopy phenology and tree cambium phenology. Results showed that the end of season (EOS) of the vegetation canopy was significantly correlated with the EOS of the Chinese pine cambium. Such correlation was stronger than that between grassland and cambium. The start of season (SOS) and EOS of Chinese pine were related to the averaged minimum temperature in May-June and August-September, respectively. When the average minimum temperature in May-June increased by 1 ℃, SOS would be advanced by 4.3 days. The averaged minimum temperature in August-September increased by 1 ℃, EOS would be delayed by 2.6 days. The correlation between the phenology of vegetation canopy and the phenology of the cambium in Chinese pine differed among vegetation types. Simulating tree growth dynamics only through a tree-ring physiology model might lead to biased results. Using remote sensing monitoring data to combine canopy development and cambium growth would help to more accurately understand tree growth dynamics.

Related Organizations
Keywords

China, Cambium, Climate Change, Temperature, Seasons, Trees

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research