

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Determination of reverse cross-relaxation process constant in Tm-doped glass by ^3H_4 fluorescence decay tail fitting

doi: 10.1364/ome.7.003760
handle: 20.500.14243/330849 , 10261/176535 , 11572/342834
In this paper, we numerically investigate the fluorescence decay of Tm-doped tellurite glasses with different dopant concentrations. The aim is to find a set of data that allows the prediction of material performance over a wide range of doping concentrations. Among the available data, a deep investigation of the reverse cross-relaxation process (3F4, 3F4, →3H6, 3H4) was not yet available. The numerical simulation indicates that the reverse cross-relaxation process parameter can be calculated by fitting the slow decaying 3H4 fluorescence tails emitted when the pump level is almost depopulated. We also show that the floor of the 3H4 decay curve is indeed related to a second exponential constant, half the 3F4 lifetime, kicking in once the 3H4 level depopulates. By properly fitting the whole set of decay curves for all samples, the proposed value for the reverse cross-relaxation process is 0.03 times the cross-relaxation parameter. We also comment on the measurement accuracy and best set-up. Excellent agreement was found between the simulated and experimental data, indicating the validity of the approach. This paper therefore proposes a set of parameters validated by fitting experimental fluorescence decay curves of both the 3H4 and 3F4 levels. To the best of our knowledge, this is the first time a numerical simulation has been able to predict the fluorescence behavior of glasses with doping levels ranging from 0.36 mol% to 10 mol%. We also show that appropriate calculations of the reverse cross-relaxation parameter may have a significant effect on the simulation of laser and amplifier devices.
- University of Trento Italy
- National Research Council Italy
- Institut de Physique de Nice France
- Swansea University United Kingdom
- University of Trento Italy
Laser materials, [PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics], [ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics], Energy transfer, Energy transfer ; Laser materials
Laser materials, [PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics], [ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics], Energy transfer, Energy transfer ; Laser materials
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 30 download downloads 15 - 30views15downloads
Data source Views Downloads DIGITAL.CSIC 30 15


