
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Implications of Future Wind-Driven Rain Exposure on the Hygrothermal Performance of Internally Insulated Solid Walls in London
doi: 10.14293/icmb210038
With approximately 40% of the London building stock built before 1919, internal wall insulation (IWI) is one of the likely measures for deep retrofit to meet carbon emissions targets. However, IWI can lead to moisture accumulation and associated unintended consequences, especially in walls highly exposed to wind-driven rain (WDR). Climate change is predicted to exacerbate WDR exposure. This paper presents a comparative analysis between the hygrothermal performance of IWI under current and far future (2080) climates. Historic weather station data and UKCP18 climate projections were used to develop weather files for simulating current and future climate, respectively. Hygrothermal simulations were performed using DELPHIN. Assemblies include calcium silicate, phenolic foam, and wood fibre systems. Future climate predictions are associated with a rise of interstitial relative humidity, leading to patterns more favourable to mould growth.
- University College London United Kingdom
690, climate change, hygrothermal simulations, Internal wall insulation
690, climate change, hygrothermal simulations, Internal wall insulation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
