Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MediaTUMarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MediaTUM
Conference object . 2020
Data sources: MediaTUM
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.14459/20...
Other literature type . 2021
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A user-friendly Pitot probe data reduction Excel-Refprop-Routine for non-ideal gas flow applications

Authors: Schollmeier, Jan-Niklas; aus der Wiesche, Stefan;

A user-friendly Pitot probe data reduction Excel-Refprop-Routine for non-ideal gas flow applications

Abstract

This contribution presents a user-friendly data reduction routine for Pitot probes based on widely available software with a fluid properties interface. The data reduction process rests on the general balance equations and the fluid database and calculation program REFPROP by NIST. In the corresponding calculation sheet, the user can easily select the fluid and manually or automatically insert the probe data and stagnation conditions of the measurement. A robust algorithm directly calculates the freestream Mach number and other flow and thermodynamic quantities. The new Pitot probe data reduction routine's accuracy is assessed through several test cases, including the subsonic and supersonic flow of dry air, Novec 649, and siloxane MM in the dilute and dense gas regime. For compressible non-ideal gas flows, it is found the classical Rayleigh-Pitot equation is systematically in error even in the dilute gas regime where relative deviations of more than 10 % were noticed. In the dense gas regime, the Rayleigh-Pitot equation fails dramatically in calculating the freestream Mach number, and errors larger than 60 % were observed.

Country
Germany
Keywords

540, ddc: ddc:

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green