Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Bristo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Oil Gas and Coal Technology
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the effect of a global adoption of various fractions of biodiesel on key species in the troposphere

Authors: Cooke, M. C.; Marven, A. R.; Utembe, S. R.; Archibald, A. T.; Ensor, G. W. R.; Jenkin, M. E.; Derwent, R. G.; +2 Authors

On the effect of a global adoption of various fractions of biodiesel on key species in the troposphere

Abstract

Biodiesel use is being promoted worldwide as a green alternative to conventional diesel. A global three-dimensional chemistry transport model is employed to investigate the impact on air quality and global tropospheric composition of adopting biodiesel as a fractional component of diesel use. Five global simulations are conducted where emission changes of hydrocarbons and nitrogen oxides were applied within the model to investigate changes in tropospheric pollutants. Hydrocarbon emission reductions lead to an overall improvement in air quality with reductions in ozone, organic aerosol, aromatic species and PAN. However when the increase in NOx, caused by increased exhaust temperature, is included there is negligible difference in ozone production between mineral diesel and biodiesel blends. The cause of these effects is discussed. [Received: September 30, 2009; Accepted: December 12, 2009]

Country
United Kingdom
Related Organizations
Keywords

OVOCs, AROMATIC-HYDROCARBONS, 330, INTERMEDIATES CRI MECHANISM, biodiesel, PARTICULATE MATTER, SOA, ATMOSPHERIC CHEMISTRY, LAGRANGIAN MODEL, DIESEL, CARBONYL-COMPOUNDS, air quality, biofuels, 620, ORGANIC AEROSOL FORMATION, ozone, EXHAUST EMISSIONS, global modelling, secondary organic aerosol

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average