Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Production calculation of multi-cluster fractured horizontal well accounting for stress shadow effect

Authors: Qingdong Zeng; Jun Yao;

Production calculation of multi-cluster fractured horizontal well accounting for stress shadow effect

Abstract

The objective of this study is to investigate the effect of stress shadow in the process of multi-cluster fracturing on the production of horizontal well. First, the model of simultaneous propagation of multiple fractures is established with coupling rock deformation, fluid flow in fracture and wellbore. This model is solved by using iterative procedure. Based on the solution of hydraulic fracturing, a modified method is presented to calculate transient production of horizontal well by using source function and superposition principle. Two scenarios in regards to fracture conductivity have been considered. In the situation that fracture conductivity is varying, the variation of fracture width is captured by joint element method. Thus, the relation between model of hydraulic fracturing and of production calculation is well established. Both models have been verified, and the effect of stress shadow on well production has been analysed. Results show that accounting for stress shadow helps to increase well production. As fluid is extracted out from wellbore, the fracture conductivity would decrease rapidly, and then it leads to decrease well production. Moreover, the model is extended to calculate production of simultaneously fractured wells. [Received: November 30, 2017; Accepted: April 15, 2018]

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average