Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Liriasarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2018
Data sources: Lirias
International Journal of Chemical Reactor Engineering
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Waste-to-energy: Coupling Waste Treatment to Highly Efficient CHP

Authors: De Greef, J.; Verbinnen, B.; Van Caneghem, J.;

Waste-to-energy: Coupling Waste Treatment to Highly Efficient CHP

Abstract

Abstract Municipal Solid Waste Incineration (MSWI) has become the most widespread Best Available Technology (BAT) to treat residual waste streams in a reliable and safe way. As such, MSWI has contributed to achieve the landfill diversion targets in many EU member states. Modern waste incinerators, also referred to as Waste-to-Energy (WtE) plants, have furthermore evolved to producers of electricity, heat and steam for energy-consuming industries, agriculture and residences. However, due to the specific composition and properties of MSW and similar waste, and due to the historical development of MSWI, the exploitation of WtE plants as combined heat and power (CHP) plants is not straightforward. The aims of this paper are to develop a better understanding of these limitations, to point out possibilities for increasing the level of energy recovery and utilization in WtE plants, and to document this approach with data and experiences from selected WtE plants currently integrated in CHP schemes. Finally, some design and operational challenges for waste-fired CHP plants are further elaborated from a WtE plant supplier’s perspective.

Related Organizations
Keywords

MUNICIPAL SOLID-WASTE, Technology, Engineering, Chemical, Science & Technology, 0904 Chemical Engineering, RECOVERY, Chemical Engineering, MSW, 4004 Chemical engineering, Engineering, waste-to-energy, PLANTS, combined heat and power, combustion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Green