Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.15161/oa...
Other literature type . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.15161/oa...
Other literature type . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

Magnetic field, Lorentz forces and stored energy of multipole cos(nθ) and sector magnets with and without iron yoke

Authors: orcid bw Farinon, Stefania;
Farinon, Stefania
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Farinon, Stefania in OpenAIRE
orcid Novelli, Daniel;
Novelli, Daniel
ORCID
Harvested from ORCID Public Data File

Novelli, Daniel in OpenAIRE

Magnetic field, Lorentz forces and stored energy of multipole cos(nθ) and sector magnets with and without iron yoke

Abstract

When approaching the design of a multipole magnet, such as a dipole, quadrupole, sextupole, and so on, it is highly advantageous to initiate the process by establishing the fundamental parameters. These parameters include conductor size, current density, inner and outer radius of the iron yoke, and more. This preliminary dimensioning enables the acquisition of the necessary specifications for the design. Within this report, analytical expressions for the magnetic field, Lorentz forces, and stored energy of multipole magnets with the cos(nθ) and sector coil configurations, both with and without the presence of an iron yoke, are derived. These derivations are based on the vector potential of a current line.

Keywords

Magnetic field, Sector magnet, Lorentz forces, Quadrupole, Stored energy, Magnets, Superconduting Magnets, Dipole, Multipole cos(nθ) magnet

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities